Homework 10 (not due for credit)
Directions:
- Show each step of your work and fully simplify each expression.
- Turn in your answers in class on a physical piece of paper.
- Staple multiple sheets together.
- Feel free to use Desmos for graphing.
Answer the following:
- State which of the following are true or false:
- $\log_3 4^5 = 5$
Hint Different bases.
- $\ln 3x = \ln 3 + \ln x$
- $\ln(3 + x) = \ln 3 + \ln x$
- $\ln(x(x-1)) = \ln x + \ln (x - 1)$
- $\ln x^2 = 2\ln x$
- $(\ln x)^2 = 2\ln x$
- $\log_2(x - 3) = \log_2 x - \log_2 3$
- $\ln\left(\dfrac{x}{x - 1}\right) = \ln x - \ln (x - 1)$
- Use Laws of Logarithms to evaluate the expression without a calculator:
- $\log 5 + \log 20$
- $\log_5 \sqrt{5}$
- $\log_2 60 - \log_2 15$
- $\log_4 16^{100}$
- $\ln (\ln e^{e^{200}})$
- Expand these logarithms using Laws of Logarithms:
- $\log_3 4x^2$
Hint $4$ and $x^2$ are factors
- $\ln \left(x^2 (x-1)\right)^3$
- $\ln \dfrac{3x^2}{(x - 1)^4}$
- $\ln \sqrt[3]{\dfrac{a}{b + 2}}$
- $\log_7 ab^2$
- $\ln(\ln(x)\ln(y))$
- Combine these logarithms using Laws of Logarithms:
- $\log_4 x + \log_4 (x - 1)$
- $3\ln (x-3) - 2\ln x$
- $\frac{1}{3}\log (2x^2 + 1) - \frac{1}{2}\log(3x - 4)$
- Find the solution of the exponential equation. Write your answer as a number unless the logarithm is not easy to evaluate.
- $5^{x - 1} = 125$
- $5^{2x-3} = 1$
- $e^{1-4x} = e^2$
- $5^x = 4^{x+1}$
Hint Both sides have different bases. First convert $4^{x+1} = 4\cdot 4^x$ and divide both sides by $4^x$.
- Find the solution of the logarithmic equation. Write your answer as a number unless the exponent is not easy to evaluate.
- $\log x + \log(x - 1) = \log(4x)$
- $\ln x = 10$
- $\ln(2 + x) = 1$
- $2\log x = \log 2 + \log(3x - 4)$
- $\log x + \log(x - 3) = 1$
- $\log_2(x^2 - x - 2) = 2$
- $\log_2(\log_3 x) = 2$
Hint Convert to exponential form twice.