7.3: Double-Angle, Half-Angle, and Product-Sum Formulas


Below are four sets of trigonometric formulas that are useful!

Double-Angle Formulas


\begin{align} \sin 2x &= 2\sin x \cos x \\ \cos 2x &= \cos^2 x - \sin^2 x \\ &= 1 - 2\sin^2 x \\ &= 2\cos^2 x - 1 \\ \tan 2x &= \dfrac{2\tan x}{1 - \tan^2 x} \end{align}

These identites are useful for expressions like $\sin 3x$ and $\sin 4x$. We can write \begin{align} \sin 3x &= \sin (x + 2x) & \\ &= \sin x \cos 2x + \cos x \sin 2x & \text{Addition identity} \end{align} and also \[\sin 4x = \sin\bigg(2(2x)\bigg) = 2\sin 2x \cos 2x\] Notice how both of the expressions now contain $\sin2x$ and $\cos 2x$. These can be simplified using the double angle formula again.

Prove the identity \[\dfrac{\sin 3x}{\sin x \cos x} = 4\cos x - \sec x\]

Half-Angle Formulas


\begin{align} \sin \dfrac{u}{2} &= \pm \sqrt{\dfrac{1 - \cos u}{2}} \\ \cos \dfrac{u}{2} &= \pm \sqrt{\dfrac{1 + \cos u}{2}} \\ \tan \dfrac{u}{2} &= \dfrac{1 - \cos u}{\sin u} = \dfrac{\sin u}{1 + \cos u} \end{align} where the sign depends on the quadrant where $\dfrac{u}{2}$ lies.
Find the exact value of $\sin 22.5^\circ$.
Find the exact value of $\cos 15^\circ$.

Product-to-Sum Formulas


Below are four formulas which convert factors into terms.

\begin{align} \sin u \cos v &= \dfrac{1}{2}\left[\sin(u + v) + \sin(u - v)\right] \\ \cos u \sin v &= \dfrac{1}{2}\left[\sin(u + v) - \sin(u - v)\right] \\ \cos u \cos v &= \dfrac{1}{2}\left[\cos(u + v) + \sin(u - v)\right] \\ \sin u \sin v &= \dfrac{1}{2}\left[\cos(u + v) - \sin(u + v)\right] \\ \end{align}
Express $\sin 3x \sin 5x$ as a sum.
Express $\cos 5x \cos 3x$ as a sum.

Sum-to-Product Formulas


Below are four formulas which covnvert terms into factors.

\begin{align} \sin x + \sin y &= 2\sin\dfrac{x + y}{2}\cos\dfrac{x - y}{2} \\ \sin x - \sin y &= 2\cos\dfrac{x + y}{2}\sin\dfrac{x - y}{2} \\ \cos x + \cos y &= 2\cos\dfrac{x + y}{2}\cos\dfrac{x - y}{2} \\ \cos x - \cos y &= -2\sin\dfrac{x + y}{2}\sin\dfrac{x - y}{2} \\ \end{align}
Express $\sin 7x + \sin 3x$ as a product.
Prove the identity \[\dfrac{\sin 3x - \sin x}{\cos 3x + \cos x} = \tan x\]