A major concept in calculus is integration. To understand what the integral is, we discuss four different ideas:
Limits at infinity, or $\lim_{x\rightarrow \infty}f(x)$
Mean Value Theorem
Antiderivatives
The integral itself
In Section 1.5 we looked at when a limit is infinity (vertical asymptotes).
We now look at a limit at infinity, or when the limiting variable increases or decreases without bound.
Definition of a Limit at Infinity
The function $f$ has the limit $L$ as $x$ increases without bound (meaning $x\rightarrow \infty$), written as \[\lim_{x\rightarrow \infty}f(x) = L\] if $f(x)$ can be made arbitrarily close to $L$ by taking $x$ large enough.
Similarly, the function $f$ has the limit $M$ as $x$ decreases without bound (meaning $x\rightarrow -\infty$), written as \[\lim_{x\rightarrow -\infty}f(x) = M\] if $f(x)$ can be made arbitrarily close to $M$ by taking $x$ to be a sufficiently large negative number.
If $L$ or $M$ from above exist, then $f(x)$ has a horizontal asymptote.
Given this function $f(x)$
find $\displaystyle\lim_{x\rightarrow \infty} f(x)$ and $\displaystyle\lim_{x\rightarrow -\infty} f(x)$
Find these limits: \[\lim_{x\rightarrow \infty} \dfrac{1}{x} \qquad \lim_{x\rightarrow -\infty} \dfrac{1}{x}\]
For all $n > 0$, we have \[\lim_{x\rightarrow \infty} \dfrac{1}{x^n} = 0 \qquad \text{and} \qquad \lim_{x\rightarrow-\infty}\dfrac{1}{x^n} = 0\] if $\frac{1}{x^n}$ is defined.
You can quickly verify this because there exist horizontal asymptotes for any value of $n$.
Limit laws also hold for limits at infinity. For example: \[\lim_{x\rightarrow\infty}[f(x) + g(x)] = \lim_{x\rightarrow\infty}f(x) + \lim_{x\rightarrow\infty}g(x)\]
The largest power term of $x$ in the denominator is $x$. Because $x\rightarrow \infty$, $x$ is growing without bound, so $x$ must be positive.
Recalling that \[\sqrt{x}\cdot \dfrac{1}{x} = \sqrt{x}\cdot\sqrt{\dfrac{1}{x^2}} = \sqrt{x\cdot \dfrac{1}{x^2}}\] by the Laws of Exponents #4, we use this move in the numerator:
\begin{align}
\lim_{x\rightarrow \infty} \dfrac{\sqrt{2x^2 + 1}}{3x - 5} &= \lim_{x\rightarrow \infty} \dfrac{\dfrac{\sqrt{2x^2 + 1}}{x}}{\dfrac{3x - 5}{x}}
\\&= \lim_{x\rightarrow \infty} \dfrac{\sqrt{\dfrac{2x^2 + 1}{x^2}}}{3 - \dfrac{5}{x}}
\\&= \dfrac{\displaystyle \lim_{x\rightarrow \infty} \sqrt{2 + \dfrac{1}{x^2}}}{\displaystyle \lim_{x\rightarrow \infty} \left(3 - \dfrac{5}{x}\right)}
\\&= \dfrac{\sqrt{\displaystyle \lim_{x\rightarrow \infty} 2 + \lim_{x\rightarrow\infty} \dfrac{1}{x^2}}}{\displaystyle \lim_{x\rightarrow \infty} 3 - 5\lim_{x\rightarrow \infty} \dfrac{1}{x}}
\\&= \dfrac{\sqrt{2 + 0}}{3 - 5 \cdot 0}
\\&= \dfrac{\sqrt{2}}{3}
\end{align}
Infinite Limits at Infinity
The notation $\lim_{x\rightarrow\infty}f(x) = \infty$ means the values of $f(x)$ become large as $x$ becomes large.
Note that $\infty$ is not a number; it is used to represent a specific characteristic about $f(x)$.